
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6303 10

Reliable and Secured Distributed Deduplication

System in Cloud Computing

Rohit Jagtap
1
, Akshay Deore

2
, Kiran Mate

3

Student, Computer Engineering, ARMIET, Asangaon, India
 1, 2, 3

Abstract: Cloud Storage has been commonly used by many users, deduplication is a one of the technique used in such

cloud storages. Basic idea of deduplication is that there should be only single instance of a file stored in the servers

even if it is used by millions of users. Although deduplication increases storage consumption, the technique itself is not

very reliable. Likewise, when the user uploads some file security concern of confidentiality of that file also arises. With

the above security concerns keeping in mind we put forward this paper with an idea of creating a reliable distributed

deduplication system. With our system we target to improve reliability of files with them scattered across multiple

serves. With our new covert sharing mechanism we also meet the security requirements of data confidentiality and

consistency, all of this without using any cryptography mechanism of any sort. Our tests show that this system is

secured as it fulfills our security threat model. As a proof of concept, we implement the system we put forward and

show that the incurred operating cost is very limited in realistic environments.

Keywords: Deduplication, distributed storage system, reliability, covert sharing.

I. INTRODUCTION

With increase in the amount of digital data, deduplication

techniques are widely used to reduce network overhead

and storage overhead of servers by checking for

redundancy and removing them. Deduplication removes

redundant files and keeps single instance and refer other

redundant copies to that instance of the file, instead of

having multiple instance of a single file. Lately

deduplication has gathered much attention as it reduces

network overhead and reduces storage utilization saving

storage spaces.

There are a number of deduplication techniques used such

as client-side server-side deduplication, file-level

deduplication and block-level deduplication. When cloud

storage comes in question data deduplication becomes

more important and critical as it manages the ever

increasing amount of data in cloud storage services, due

this increasing data organizations and enterprises are

forced to use third party cloud storages providers. IDC

reports shows that by 2020 the amount of data in the world

is expected to reach 40 million petabytes that’s 40 trillion

gigabytes.

There are two types of data duplication based on size:

(i) File-level deduplication: - This focuses on discovering

redundancies between different file and eliminate these

redundancies to reduce overhead.

(ii) Block-level deduplication: - A file can be decomposed

into smaller blocks these blocks can be of variable or

fixed sizes. This technique focuses on discovering and

eliminating redundancies between these created blocks

of files. Using fixed sized blocks makes computations

simple and is simple in complexity. Whereas using

variable sized blocks is efficient.

While using deduplication techniques can reduce storage

overhead it is not very reliable concept. As there is only

once copy of file stored on the servers and is used by

multiple user the data reliability becomes difficult to

achieve. If a file/chunk is lost, a huge amount of data

becomes unavailable as the chuck shared by that

file/chuck becomes unavailable.

Thus it becomes important to assure a high data reliability

in deduplication but how? Previous deduplication systems

were mostly focused on single server. However,

deduplication system and cloud storages are made for

users as it should have higher reliability specifically in

archival storage systems as the data is critical and

supposed to be stored over a longer period of time. This

requires for our system to have more reliability than high-

available systems.

Furthermore, the question of data privacy arises as data is

being outsourced to cloud. Cryptography is one of the

technique used in protecting the confidentiality of the

outsourced data. But with encryption mechanisms the

deduplication mechanism becomes difficult to implement.

Because in traditional encryption mechanisms, it requires

different users to convert their files into cipher texts using

their own keys. This creates different cipher texts of

identical copies of file. To solve this problem of

confidentiality with deduplication, an idea of convergent

encryption is proposed have deduplication with

confidentiality. But this system although make data

confidential it also makes the data less resilient to errors.

Hence we arise with a question how to achieve

deduplication with ensuring confidentiality as well as

reliability.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6303 11

II. PROBLEM FORMULATION

A. System Model

This section defines our system model and security threat

model we want to tackle. There are two entities that will

be involved in our system User and Cloud service

provider(CSP). To save bandwidth for data uploading and

space for storing we support both client-side and server-

side deduplication.

User: - A user is an entity who can outsource his data to

CSP and can access it later. A user uploads only unique

data but does not upload any duplicated data to save

upload bandwidth in a deduplication system. Furthermore,

to provide high reliability a fault tolerance mechanism is

required.

CSP: - The data outsourced by the user is stored in the

Cloud Service Provider. Even if the user owns and stores a

duplicated content in the storage the CSP will take care of

the deduplication and will store a single instance of the file

and retain only unique data. A deduplication technique,

can save the upload bandwidth as it reduces the storage

cost by performing deduplication at server side. The user

data is distributed across multiple CSPs.

We perform both file level and block level deduplication

on these servers. Specifically, when a file is uploaded first

it checks for file level deduplication. If it is a duplicate,

then all its blocks must be duplicates as well, otherwise,

the file is divided to blocks and check for duplicate blocks

and store only the unique blocks only. A tag is associated

with each data copy (i.e., a file or a block) for the

duplicate check. The CSP store all the tags and data

copies.

B. Threat Model and Security Goals

Our threat model covers two types of attackers: (i) An

outside attacker, who uses public channels to obtain some

knowledge of the data copy. This type of attacker plays the

role of user interacting with the CSPs; (ii) An inside

attacker, who has some information about the data i.e.

partial knowledge of the data such as cipher text. An

insider attacker is assumed to be honest-but-curious and

will follow our protocol, which could refer to the S-CSPs

in our system. Their goal is to extract useful information

from user data. Our model consists of the following

security requirements, Confidentiality, Integrity,

Reliability.

Confidentiality: - Here, CSPs allows collusions among

them. Although we must look that the number of colluded

CPSs should not go beyond the predefined threshold. To

this end, we propose to get data confidentiality against

collusion attacks. Even if the attacker controls a

predefined number of CSPs, the data stored and distributed

should remain secure. The attackers goal is to retrieve data

which does not belong to him. This also implies that the

attacker cannot access the data which he does not own.

Integrity: - Tag consistency and message authentication

are two integrity involved in our security model. A

duplicate/cipher text replacement is prevented due to the

tag consistency check which in run by the cloud storage in

file uploading phase. If an attacker tries to upload a

maliciously generated cipher text, if the tag mismatch with

the honestly generated tag the cloud server can detect such

behaviour. Thus making the user carefree that the data is

not being replaced or being unable to decrypt. To check

whether the downloaded or decrypted data is uncorrupted

we perform a message authentication check. This security

requirement protects the CSPs from and inside attacker.

Reliability: - The reliability in deduplication is a security

measure that can provide fault tolerance by using means of

redundancy. In more details, in our system, even a node

fail it can be tolerated. The system should provide user

with the correct output when the system detects such

faults.

III. DISTRIBUTED DEDUPLICATION SYSTEM

We propose a distributed deduplication system, its aim is

to achieve data deduplication while achieving data

confidentiality, reliability and integrity. The systems main

goal is to perform deduplication and store data across

distributed cloud servers. We are using secret splitting

technique which divides data into shards instead of using

conventional encryption technique to achieve

confidentiality. These shards will get distributed across

multiple distributed servers.

A. Building Blocks

Covert Sharing Scheme: - The covert sharing scheme

proposed by us has two algorithms namely Share and

Recover. Share algorithm is used to divide the data and

share it. When adequate amount of shares is gathered, the

Recover algorithm is used to extract and recover the data.

With the help of Ramp Secret Sharing Scheme (RSSS) we

will be splitting the data into fragments. The data is split

into n number of shares and produce (n, k, r) such that n >

k > r ≥ 0 by following the protocols that (i) data can be

extracted from any k or more shares, and (ii) anyone

cannot deduce any information by having r or less shares.

There are two algorithms in RSSS Share and Recover they

are defined as(n, k, r).

Share, let secret be S, the share algorithm splits the data

into (k-r) fragments of same sizes. This generates n

number of shares in which there are r random pieces and k

is generated suing k/n code in shares;

Recover algorithm produces the original data by taking

any k piece from the n number of shares.

Tag Generation Algorithm: -This system we have defined

two algorithms to generate tags, those are TagGen and

TagGen’. Suppose we have F as our unique data instance,

TagGen algorithm produces tag T(F) by mapping F. The

deduplication check is performed with the help of this user

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6303 12

generated tag. With the help of file and an index j

TagGen’ outputs a tag. This tag gives a proof of ownership

of the user to the file F.

Message Authentication Code: - A message authentication

code is an information which provides integrity that the

message is authentic and unaltered. MAC is used in our

system to provide integrity on the outsourced data saved

on cloud servers. A keyed cryptographic hash function is

used to generate this message authentication code, a secret

key and a file that need to be authenticated is given as

input to this function, and that function gives MAC as the

output. Only user with the same MAC value can

authenticate the integrity of the file.

B. File Level Distributed Deduplication System

For the duplication check, for each file to be uploaded tags

are generated and sent to CSPs. The tags generated are

stored on different servers and are independent, this is

done to prevent a collusion attack launched by the CSPs.

System Setup: - In our system, let the number of storage

servers in CSPs be n and their identities denoted by s1, s2,

· · ·, sn, respectively. Define and initialize the initial

security parameter as 1 λ and a secret sharing scheme SS=

(Share, Recover) and TagGen as our tag generation

algorithm. The file storage system for the storage server is

set to be ⊥.

File Upload: - Uploading a file F, the user uploads a file f

onto CSPs which performs deduplication. Specifically, the

system will apply the TagGen algorithm of the file F i.e.

tag φF = TagGen(F) this tag is then send to CSPs for the

duplication check

When a duplicate is found, the user calculates φF,sj =

TagGen′ (F, sj) and sends it to the j server with sj as its

identity via protected network. Index j prevents from other

CSPs shares of the same file or block from other CSPs. If

φF stored in the jth CSP(sj) matches the metadata of φF,sj,

a pointer is provided pointing to the shard stored in the sj.

When a duplicate is not found. A secret sharing algorithm

is performed on F to get {cj} = Share(F), where cj is the j-

th shard of F. Also computing the TagGen algorithm to

calculate φF,sj = TagGen′ (F, sj), to generate a tag for the

jth CSPs. Finally, a protected channel is used to upload a

the set of values calculated {φF ,cj , φF,sj } with sj as the

CPS’s identity. A pointer is returned back to the user after

the CPS had stored these values for local storage.

File Download: - For downloading a file F, the user will

firstly download the shares {cj} of the desired file from k

out of n servers. Precisely, the user sends the pointer of F

to k out of n CSPs. After enough shares had been gathered

the user will reconstruct the file F using the Recover

Algorithm Recover({cj}).

Even if the some of the storage servers fails the user can

still access his file using above method this provides a

fault tolerance mechanism.

C. Block Level Distributed Deduplication System

In a block-level deduplication system, before uploading

his file the user needs to perform a file level deduplication.

When no duplicates are found the user will further divide

the file into chunks and perform block level deduplication

on every chunk of that file. Except for the additional block

size parameter, the system setup is same as that of file

level deduplication.

File Upload: - Uploading a file F, Primarily the user

performs a file level deduplication and send the φF to the

storage servers. When it is a duplicate, file level

deduplication is performed by the user. Otherwise, when

there is no duplicate found on the server, the user will

perform a block level deduplication.

The user will primarily divide the file into chunks like a

set of fragments {Bi} (where i = 1, 2, · · ·). After

generating the fragments, the user will perform block level

deduplication of on each fragment {Bi} by calculating φBi

= TagGen(Bi), by replacing file F with block Bi in the file

level deduplication the data processing and the duplication

check is same as that of the file level deduplication.

A block signal vector σBi is computed for each i by the

server sj when the block tags {φBi} are received.

i) When σBi=1, the user calculates φBi,j = TagGen′ (Bi, j)

and sends it to the CSP with sj as its identity. A block

pointer of Bi is returned to the user when the tag is

matched with a tag stored. If a user receives a block

pointer of the block, then he does not need to upload that

block Bi.

ii) When σBi=0, a Share is generated such as {cij} =

Share(Bi) (where cij is the jth SS of Bi) by performing a

secret sharing algorithm on Bi. After calculating φBi,j the

user uploads the set of values {φF , φF,idj , cij , φBi,j} to

the sj server using a protected channel.

File Download: - Downloading a file F={Bi}, the user

must acquire the shares {cij} of all the blocks Bi which are

of file F from k of n CSPs. Precisely, k out of n servers

receives all the block pointer Bi sent by the user. After all

the shares have been gathered Recover {{.}} algorithm is

applied on all the shares to reconstruct the Bi and finally

reconstruct the file F using the acquired fragments Bi such

that F={Bi}.

IV. CONCLUSION

We propose a distributed deduplication system which

focuses on improving reliability of data and also achieving

confidentiality of users’ saved data all the while

performing deduplication. We proposed file-level

deduplication, block-level deduplication and client-side as

well as server-side deduplication. We achieved integrity

with the help of tag consistency and Machine

Authentication Code (MAC). We used cover secret

sharing mechanism and show that our system reduces

network overhead and storage overhead while uploading

and downloading.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6303 13

ACKNOWLEDGMENT

This work was supported by Alamuri Ratnamala Institute

of Engineering and Technology. A big thank you to our

professor and guide Prof. Ravi Raju Y for guiding us

throughout this research.

REFERENCES

[1] Walter Santos, Thiago Teixeira, Carla Machado, Wagner Meira Jr.,

Altigran S. Da Silva, Renato Ferreira, DorgivalGuedes, “A Scalable
Parallel Deduplication Algorithm”.

[2] Jingwei Li, Jin Li, DongqingXie and Zhang Cai, “Auditing and

Deduplicating Data in Cloud”.
[3] Ronald L. Krutz, Russell Dean Vines, “Cloud Security”.

[4] Benjamin Zhu, Kai Li, Hugo Patterson, “Avoiding the Disk

Bottleneck in the Data Domain Deduplication File System”.
[5] Google, MSDN, Stackoverflow.

